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although theyv still intluence intrinsic cache perfermance. Looking at traces

trom the viewpoint of a memory block leads to a new notion of reference locality
tor multiprocessors, called processor locality. In this paper, we study the
temporal, spatial, and processor locality in the memory reference patterns

ot three parallel applications. Based on the observed locality, we then reflect
on the expected cache behavior of the three applications. 7
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Temporal, Processor, and Spatial Locality
in
Multiprocessor Memory References*

Anant Agarwal Anoop Gupta
Laboratory for Computer Science Computer Systems Laboratory
Massachusetts Institute of Technology Stanford University
(Cambridge, MA 02139 Stanford, CA 94305
Abstract

The performance of cache-coherent multiprocessors is strongly influenced by locality in
the memory reference behavior of parallel applications. While the notions of temporal and
spatial locality in uniprocessor memory references are well understood, the corresponding
notions of iocality in multiprocessors and their impact on multiprocessor cache behavior are
not clear. A locality model suitable for multiprocessor cache evaluation is derived by viewing
memory references as streams of processor identifiers directed at specific cache/memory
blocks. This viewpoint differs from the traditional uniprocessor approach that uses streams
of addresses to different blocks emanating from specific processors. Qur view is based on the
intuition that cache coherence traffic in multiprocessors is largely determined by the number
of processors accessing a location, the frequency with which they access the location, and the
sequence in which their accesses occur. The specific locations accessed by each processor.
the time order of access to different locations, and 1. - _ 7 of the working set play a smaller
role in determining the cache coherence traffic, althe -« - hey still influence intrinsic cache
performance. Looking at traces from the viewpoint of - :mory block leads to a new notion
of reference locality for multiprocessors, called processor locality. In this paper, we study the
temporal, spatial, and processor locality in the memory reference patterns of three parailel
applications. Based on the observed locality, we then reflect on the expected cache behavior
of the three applications.

1 Introduction

Multiprocessors often use caches to reduce their network bandwidth requirements. Caches retain
recently accessed data so that repeat references to this data in the near future and will not
require network traversals. Repeated access to the same data in a given interval of time is the
property of temporal locality of memory refercnces and has been well studied in single processor
systems [1, 2]. Spatial locality of memory references is another related property of memory
references that places a high probability of access to data close to previously accessed data.

Again, *his property of single processor programs has heen widely observed. The ~iability of

cache-coherent multiprocessors is strongly predicated on whether the multiproces.cr caches can
exploit locality of memory referencing.

*Preliminary results of this study were reported in Sigmetries 1988,




Clearlv, a thorough understanding of the memory access patterns of parallel processing
applications ix necessary to determine a suitable organization of the memory hierarchy in mnl-
tiprocessors. For example, several cache consisteney algorithms proposed in the literature are
based ow subtle differences in the expected memory reference patterns; lacking a characterization
of muiltiprocessor memory referencing locality, it s hard to obtain insight into the benefits of
one scheme over another. While some previous studies have looked at shared-memory reference
patterns (e, [3)), they did not analyze the temporal. spatial, and processor locality of shared
dati.

Unforuunately. multiprocessor locality models that we can use to aid in our understanding
of the reference patterns of parallel systems do not exist. The well known notions of locality
tr singhe processor systems do rot carry over straightforwardly.  Consider, for example, the
sequence of memory references ryryrargrsrs to the same memory block. While such temporal
locality can be usefully exploited by a uniprocessor cache. the degree to which a multiprocessor
nses such locality depends on which processor inade the judividiual references and whether the
refercnees were reads or writes, The negative extreme case would curespond to each reference

Leing a write and emanativg i a different processor,

Studiiariy, block size effects wre hard to estimate. Increasing the block size could improve
wsefal locaiity by eapturing additioual data words in the block that will be referenced by the
processorin the near futare. However. two data words being written by different processors could
fall into rhe same block owing to a block size increase and prove harmful to cache performance.

We present a simple characterization of multiprocessor memory references and derive a lo-
cality model that is nseful in a multiprocessor context. The key to the model is that we focus
ou the <et of references by one or more processors to a given memory block. We introduce the
notion of processor locahty as the average number of repeat references to a memory block by
the same processor. Specific variations of processor locality can be defined for use in differ
ent applications. For example. one interesting form of processor locality that provides insight
tuto ownership-based cache coherence schemes is the sequences of repeat references to a given
wemory block by the same processor, given that at least one of the references is a write (4.
A stighidy different definition might count just the number of writes to a block by the same
processor Lefore a reference hy another processor. Eggers and Katz [3] proposed using sucl a
eetric i cparacterizing multiprocessor memory references.

sesides its obvious use in gaining insight into the performance of cache cohcrence schienies.
processor locality metrics can also be used to evaluate the efficacy of block structuring algorithns
proposcd to enhance locadity in memory referencing of shared memory multiprocessors.

Wenise our Jocality characterization to analyze the locality patterns in three parallel appli-
cations nsing address trace data. Multiprocessor address traces are derived from these parallel
sppiications mneing under the MACH operating svstem on a shared-memory multiprocessor. An
extended ATUNM address tracing scheme implemented on a 4-CPU DEC VAX 8350 [6] provided
the trace data used in this stady, The applications include ParaOPS5 --a parallel implementa-
tion of tiie OPSA rule-based Laneuage. P-Thor a parallel logic simulator, and LocusRoute . a
alobal ronter for VEST standard cefls !

Our resalts suggest that shared references dicplay a significant amount of temporal locality
and onlya moderate amount of processor locality.  The average nun.l)n{anf read and wrire

PNGt that these programs were callod POPS) THOR, and PEROUTE in i onganal Sigmetries VIS8 pane
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references to a write-shared Hlock before a remote reference are - and 2 respectively.  'his
laeality s exploited by the write-back class of cache coberence schemes to reduce the cost of
references to shared data.

This paper is organized as follows. Section 2 defines onr multiprocessor model and the termi-
nology used throughout the paper. Section 3 presents background information about the ATUNM
address tracing technique and e applications measured. Sections |1 constitutes the bulk of rhin
paper and is deveted to analyzing locality in the parallel traces. and studying the impact of the
reference characteristics on cache consisteney algorithms. Specifically, Section 4.1 assesses the
temporal locality in shared references, Section 4.2 the processor locality, and Section 4.3 analyvzes
spatial locality in the traces. Section 4.1 focuses on how the miemory reference characteristics
affect the performance of various cache consisteney algorithms. section 5 concludes the paper.

2 Characterizitior. of Memory References

This section presents the multiprocessor model and introduces some nomenclature to help ex-
plain memory access patterns in multiprocessors. The notion of processor locality is also iutro-
duced.

2.1 Multiprocessor Model and Definitions

The multiprocessor model we assume for our analyses is straightforward. We assume that the
svstem consists of several processors each with its own cache memory. Memory is accessed
through an interconnection network. We mahe the simplifving assumption that caches are in-
finite in size to concentrate on traffic caused owing to cache coherence related actions. The
specific organization of the network and memory svstem is, however, unimportant to our char-
acterization of locality.

We first introduce some nomenclature to help explain memory access patterns. A block is
the unit of data transfer between the cache and main rmemory. The block size is assumed to be
I word (4 bytes) unless otherwise stated. The small block size is chosen so that the reference
behavior for each data object can be derived. However, characterization using larger block sizes
is also important to study the spatial locality of shared objects. and is dealt with in Sections 1.3
and 14, A read-shared block is one that 1: shiared (accessed by multiple processors). but never
written into for the duration of the trace. A write-shared block is one that is shared, and written
at least once. A cpu-shared block is one that is either read shared or write shared.

[t is useful to have a notion of time in the context of multiprocessor execution. Our traces
contain interleaved memory accesses by the various processors in approximately the same order
thev oceurred. However, the exact time at which the reference was made is not clear. For
example, if the processors i, j. and Ak eacli made references at real time instants t, ¢t + 1, and
<0 on. the trace might have the references i, j, ki jry1-7e41-ki41. where the order of the ¢!
references of the 3 processors might be random with respect to each other. The traces also show
chuters of memory references by the same processor, and the time interval between references

by the same processor also varies,

Owing to such statistical variations in the reference pattern. we will use an approximation
. - . . . . . . 7]
to real time, The order of oeenrrence of a reference in the trace is onr index of time. So the
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reference in the trace is considered to have vecurred at time r.* Because the paper considers
several cases where the traces are filtered to extract specific references (e.g.. shared user data),
to enable comparisons. the time index used for a reference depends on its index in the original
trace. Por example, when we filter out operating system references while studyving sharing in the
user address space, the time index of a user reference corresponds to its position in the unfiltered
trace.

The ensuing definitions for displaving multiprocessor locality focus on the sequence of pro-
cessors referencing a given memaory block. Coutrast this viewpoint with uniprocessor locality
that tvpically focuses on the sequence of memory addresses referenced by a given processor. A
reference to a block B3 by processor ¢ is said to ping if the previous reference to that hlock was
by processor Jowhere 7 # 00 We cadl such - reference a pinging reference. Conversely, a reference
1o a block 2 by processor ¢ s said to eling if the previous reference to that block wac also hy
processor /. Such a reference is called a elinging r ference. By these definitions, a ping can only
occur oi a reference to a shared block. Pings and clings to a block are determined simply by
keeping track of which processor last referenced a block. Similarly, the current state of a block.
clean or dirty. is deterniined solely by the ieferences of the processor accessing it currently. |\
block 1s said to be dirty if it has been written into since the previous pinging reference to it.
Therefore, a block alwayvs starts out clean following a pinging reference to it.

Fieure 1 depicts read/write references to a given memory block, where the number in the
second cuw corresponds to the processor accessing the block. The reference by processor 3 at
time /+ 2315 a pinging read reference, the reference at time {+25 is a clinging write reference.

2.2 Characterizing Locality

The notion of clings and pings allows the derivation of simple criteria for multiprocessor memory
reference locality. The appealing feature of clings and pings is that they do not depend on imple-
nientation details such as cache sizes. In addition, they provide useful information about cache
performance. For example, assuming a locid cache. clinging read references do not cause a net-
work transaction: on the otlier hand, pingiug write reference always cause a network transaction.
The ensuing discussion uses statistics derived fromn pings and clings to study locality.

Tonporal locality is displayed by references to a given block of data that are clustered in
time. Small time intervals between clinging references denote a useful form of temporal locality
i muitiprocessors; conversely, small time jutervals between pinging references is potentialiv
barnsful. Tu the reference sequence depicted in Figure 1 temporal locality of clinging references
1s maore evident,

Tie intervais between pinging and clinging references are a useful method of depicting tlhe
temporal tocality of shared-niemory references and can yield useful insights into the behavior
of small cachies in mualtiprocessor environments. However, a block might reside in a large cache
for Tong periods of time withont being displaced. iaking the relative sequence of references to
a wiven bloek by various processors a more important determinant of cache performance. The
form of locality that becomes more important, then, is called processor locality.

Processorlocalityis the tendency of a processor to access a block repeatedly hefore an access

“Webelieve that fine time distinetions are not significant in our study. T approximate real time. one can
keep a victnal svstem time ineremented by one aait for every »oreferences in the trace where 2 s the number of
processors Inother waoids, the tines specified in o paper can be divided By 1 to ¢ ta rough idea of the reaj
time
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Figure It Characterizing locality in multiprocessor tnemory references. Various processor accesses (rep-
resented by the numbes in the sccond row) of a given block B are shown. r/w stand for reads or writes.
The time instants with no corresponding references inply accesses of blocks other than B.

from another processor, and is measured by the average length of the sequences of clinging
references. In Figure 1. the average number of clinging references before a pinging reference is
(4+3+41)/3.

We can derive a class of processor locality metrics for use in different applications. For exam-
ple. a characterization that does not distinguish between read and write references is enough to
analyze cache coherence schemes such as the Diry ¥V B directory scheme studied in (8]. However.
this definition is unsuited for a cache coherence scheme that allows multiple cached copies of
clean blocks. Therefore, a more practical definition of processor locality measures the average
length of those sequences of clinging references, where at least one reference is a write. This
definition yields (3 + 4)/2 as the measure of processor locality for our example.

In general, we can use the following notation to describe a processor locality metric:
r;r/' ZL/" t,. Here, 7 and w denote reads and writes to a block by a given processor, +
denotes one or more, and * denotes zero or more. Sequences by the same processor are termi-
nated by a pinging reference of type t. The type of the pinging reference can be a read. write.
or cither (denoted r. w, r/w). The length of the rE Wt scquence determines the processor
locality. In this notation, the two definitions of processor locality in the previous paragraph are
rz w; r/wy, and r7 v} r/w, respectively.

w

Processor locality measures locality in shared references alone. It is meant as an aid to gain
insight into the shared reference patterns of parallel programs and usually cannot be used to ob-
tain performance data directly. For instance, an application that has very few shared references
will have a low rate of cache coherency related transactions even with abysmal processor local-
ity. Consequently, a performance model might consider using the fraction of shared references
iu addition to the processor locality parameter.

A direct impact of processor locality is noticed in the performance of various cache consis-
tency schemes, which exploit different locality patterns in references to read-shared or write-
shared blocks. Notice that a high temporal locality of pinging references yields a low processor
locality, and negativelyv impacts the performance of multiprocessor caches.

Spatial locality is the tendency of processors to access data in the vicinity of a recently
accessed memory word in a given interval of time. Clearly, a nseful form of spatial locality
increases the probability that a given processor accesses words in the neighborhood of words it
accessed recently, while the opposite form of spatial locality increases the rate at which other
processors access these words. Put another way, spatial locality can be useful in multiprocessors
if a larger block size increases the processor locality of shared references. As we will show in
Section 4.3 increasing the block size does not always increase the processor locality.




3 Applications and Data Collection

Our study is based on trace analysis. The traces are obtained using a multiprocessor extension
of the ATUM tracing scheme [9. ATU M stands for Address Tracing Using Microcode and works
as tollows: During the execution of each instruction. the microcode writes out the memory refer-
ences made by the processor to a portion of memory reserved for tracing. In the multiprocessor
oxtension of ATUM, each access to trace memory is interlocked to enable the microcode in several
processors to write their references to this memory. Thus a trace contains interleaved address
streams of several processors. The traces used for this study were gathered on a 4-CPU VAX
<350 machine running the MACH operating system. Each trace is roughly 3.5 million references
fong. Tu addition to addresses. ATUN records the opcodes. and the virtual-to-physical trans-
lations that occur during translation-lookaside-buffer misses. A location is considered shared
when it is referenced by more than one CPU. Because different processes could access a given
~hared location with different virtual addresses, sharing is detected by translating the various
virtual addresses of a shared location to its common physical address.

The traces used in this paper are obtained from three programs: ParaOPS5, P-Thor. and
LocusRoute. ParaOPS5 [10] is a parallel implementation of a rule-based programming language
called OPS5. which is a widely used languages for the building expert systems. It exploits
parallelism at a fine granularity and makes extensive use of the shared memory provided by the
architecture. P-Thor is a parallel implementation of a logic simulator done by Larry Soule at
Stanford University. The simnlator transforms the task of circuit simulation into a series ¢f node
~valuations, where each node corresponds to a device in the circuit. The parallel implementation
evaluates these nodes ‘n parallel. while handline the dependencies between them. LocusRoute,
is a parallel VLSI router written by Jonathan Rose at Stanford [11].

3.1 General Statistics

Tables band 2 present some trace stanistics televant to this stndy. Because the instroction snaen
s ustably read-onlv it can be treated specially in memory management, and so the statistics
preseuted in this paper correspond to data references alone. The columns in Table 1 denote
the 1otal number of user references, user data references, user data shared, and shared write
veferences. Instruction and data references are about equal as expected. In ParaOPS5, P-
Thor. aud LocusRoute, shared data references comprise roughly 20%, 10%, and 3% of all user
references. The corresponding fractions of shared write references are about 3%, 1%, and 0.2%.

Table 1: Summary of dynatic trace characteristics.

!" User References | Data References | Shared References | Shared Writes
; Trace {(thonsands) (thousands) {thousands) {thousands)
‘l ParaQPss INLT 1346 576 T
" Poithor v 1527 326 21 0
'JJ.H("%]U)IIM' d24 1528 119 f

| e statistics in ‘Table @ display the aumber of unique user blocks. unique shared blocks.
and the unique shared written blocks in the traces.

Onr anidvees in this paper focuses on user references alone., Fxcept P-Thor enr application

ol ot have aosignilicant amonnt of process migration related sharing: the few blocks that ave

0




Table 2: Summary of statie trace characteristies. Ounls nser data blocks are considered

Data Blocks | Sloared Data Blocks | \Write-Shared Blocks

Trace | {thousands) (thousands) Luousands)
ParaQDP's) 29.3 [o.R 1.0
P-Thor 719 I 13!

| LoasRoute 1.6 3.3 0.7

sha-ed by multiple processors solely due to process paigration are not counted in with sliared

blocks, Results on sharing in the operating sv~tem,and sharine owing to process migration cat
1

e fonnd in 4

4 Results and Analyses

This section first analvzes teruporal locality in the traces. We then evaluate the processor locality
in the traces and the impact of block size on this parameter. We evaluated three different caclic
coherence schemes by the amount of traffic they generate for various block sizes. This paper
summarizes our findings and uses processor locality as a means of gaining insight into their
behavior. Unless stated otherwise, we assume infinite caches and 4-byvte blocks.

4.1 Temporal Locality

This section deals with dynamic memory access patterns and characterizes the temporal locality
of cpu-shared user data refecences. We present the median of the distribution of time intervals
between clinging and pinging references in Table 3 to demounstrate the temporal locality of data
references.® The average interval of time between accesses to the same shared block tends to by
large because even one reference with a very large interval (or an outlicr) can skew the average
towards large values. Such outliers are not important for two reasous. First, in practical finite
sized caches the much shorter cache lifetime of blocks would preclude such large values. Second.
the large values in our applications is chiefly e to clinging references that occur when the
process resumes execution on the same processor after being switched out. Therefore. in the
context of time intervals, a more interesting number is the median, or the time interval over
which half the clinging or pinging references occur.

Table 3: Temporal locality characteristics. Only user data blocks are considered. Block size is 1 word (4
byies) Numbers denote the median of the frequency distribution of time intervals between three events:
clinging references, pinging references, and pinging references to a dirty block.

Trace { C'ling References | Ping References | Pings to Dirty Blks
ParaOPS5 23 10 363
P-Thor 25 7 1779
LocusRoute 281 8R 13869 19711

In ParaOPS5 and P-Thor over 50% of the intervals between clinging references are 25 time
nnits or less. Not surprisingly, these numbers show that blocks are re-referenced at small intervals

“For detailed frequency distribution graphs, see [4}.

-1




cf e CRich s sompay a recontitimation of the helief that memory references display a e

Sovporai locatinn and s the precise reason caching s successful.

Poci~Route has aomneh {areer interval. In LocusRoute, wires are selected at random and a
Serte s Chosen nsing cost aalies from aoshared matrixs Becanse a wire might be selected by
Drovessor at randon. thoere s no significant temporal locality in referencing the clements 1w the
cost et Anoaleorithim with hetter temporal locality might favor routing wires in a given
seiehborhood rather than choosing a wire at random to increase the probability a given word

s orereberenced soon, Such a cholce will benefit spatial locality also.

{ese temporal locality results are compared with those for pinging references, or for &
ceten e tow block by e processor followed by a reference from another processor. The time
Sotervaes Bere are interestingly lower than for clinging veferences. which says that references 1q
nared Siocks by diferent processors are usually at least as finely interleaved as references by
e carve processors Danbtlesslve the canse of the high temporal locality of pinging references
~ ha omr applications explont parallelism at i fine granularity. and the use of spin locks for

SR e IO

Ve anteresting asides i addition 1o a first peak at a low time interval. our frequenen

Gostroecion for pings showed o smadl second peak at 256 time units in P-Thor owing to the pro
coss voerating Yo another processor following a context switch. If the level of process migration

Coel s peakoara laree time interval can become much tallers which falzelv suggests than
Srocess cmieratinon lowers the temporal locatity of shared references. Tu realitv, process migration

sy tianes asaree fraction of the logically private blocks appear shared. and it is refereuces

ot e snares Bl ks alone shar causes the tall ~econd ]wak.

Foo provions results did not distinguish between read and write references. Makiug this
costhiction s tecessary hecorse in many bigh-performance nnltiprocessor architectures, writes
and pinaing peferences to dirty blocks cause bus traffic because the new value of the dirty block

st e sonehow transmitted 1o the requesting processor. The time interval between pinging
teferenees to aodivty bloek for the three applications is far greater than the corresponding time
betwesn ol pinging references. The high frequency of pinging references at low time intervals is
therelore artpthertable to read references. A possible case is the test-and-test &set svnchronization
~ecpierces whore one might expect multiple reads from several processors, but less frequent
wiites e Jow tepporal Toeality in pinging references to dirty blocks encourages us to believe
it o taree tine pertods blocks can he considesed as private and no traffic need be generated
otadntabine consistent caches. One conclision of this observation is that cache management

soboies st spport eflicient read sharning of blocks.

1.2 Processor Localliy

Vs celies erow bigeer: blocks are expected to stayv in the cache lor long periods of time. Then,
a better chiaracterization uses the notion of processor locality. Our dicussion here addresses
processor docality in two wavs, The first uses the number of clinging references to a bloek

ot oweT ot and the second the mumber of elinging references to a block, given that at least

viae of the references was a write r* l/'f r/u‘l,.

Fieure 2 shows the frequeney histogram of the number of clinging references to a block, giveu
At deast one peference was a write, Due to the wide range of the number of references. the bins
on the Noavi<inerease in powers of twora bar at o with height y in the frequency histogram plot
nnphies g sequences of elinging references of length (0 such that ¢ < f < 2r. Here, we will use




eeriawes because the average is more indicative of processor locality than the median: outliers

reoresent a large number of references, and st be weighted accordingly.

several observations can be made from Fignre 20 First, the average number of clinging
references to written blocks is 5.6 {or Para QPS50 3.6 for P-Thors and 7.5 for LocusRoute. Wrine
teterences are much fewer than reads and contribute 1.6, 170 and 1.2 respectively to these
averages. The write reference sequences correspond to the form of processor locality denoted

I (."}- .

We found a significantly lower processor locality in the distributions for clinging references
wien we prelaxed the reguirement that each sequence have at least one write [1]. For example.
S U-Thor there are about 200,000 pinging references 1o a block referenced only once by 1hie
privious processor. The correspondingly low average ot 1.3 for PP-Thor indicates that interleaved
soforences by doferent nroces ors are as frequent as clinging references, implying low precessor
locadity, {The averages ‘or P uOPSH and LocusRoute were ¥ and 2.5 respectively.) A caclie
consistency scheme thae allowed only one cached copy of any block [3] performed abysmally for
*his very reasorn. Another imbortant observation is that the total number of pinging references
toodirey blocks are approximately an order of magnitude lower than all pinging references, which

Lawers the overall rate of cache consistency refuted transactions.

Oue of the chief differences between some of the cache consistency schemes is the way they
treat write references. One set of schemes, e.e.. DRAGON [12] or FIREFLY [13]. allow caches
to nold valid coples of blocks that are being written into by others, and receive updates of the
valies on writes. Another set of schemes allow only one copy of a written block (e.g.. Berkeley
Owrership [141 or various flavors of directory schemes [R]). The performance of update versus
pvalidate s predicated on the locality of references to write-shared blocks. As noted carlier. the
average number of writes to a block before a pinging reference is small although not unity (1.7
for P-Thor) implying that either method will not overwhelmingly outperform the other. Our
resuits in the next section show that the invalidate and update schemes perform similarly tor !
word block sizes and hear out this intuition.

There are several possible reasons for the low value of clinging write references. We exper:
a low value for write references to spinlocks. We also expect this value to be low for migrator:
shared objects [7] which move from one processor to another, with each processor making soms
modifications to the object. Also mostly-read-only ohjects are written once. and then numerous
pruging read references are made by other processors.

We also studied the distribution of the number of clinging write references. A surprising
observation was that a significant fraction of clinging sequences had exactly one write. The larger
average is due to a small number of clinging write sequences with several tens of writes. This
dichotomous nature of clinging sequences suggests that compet;.ive cachie coherence schemes {15!
that can resort to invalidations when the number of write updates crosses a threshold might
be the right scheme to use. We also noticed that it was usually the synchronization objects
that resulted in a clinging sequence with exactly one write. So another possibility would be
to use an update-based protocol for synchronization objects, while using an invalidation-based
coherence protocol for all other data objects. In an environment where processes can migrate.
vet another scheme might use invalidations for private data objects spuriously shared due to
process migration and use updates for other blocks.

I summary, we saw that the pracessor locality of shaved-references is moderate, with ronghly
2 writes and 4 reads on average to write-shared objects before a pinging reference. Given the
moderate processor locality of shared-data. invalidating schemes such as the Berkeley Owner-
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<Hip protocol or directory schiemes and the updating protocols such as the Dragon and ©irelh
whiemes are expected 1o have sindla performance, We verified this wsing simalation in See
tiou -1

4.3 Spatial Locality

We now examine the effects of spatial locality on the performance of cache coherence scliemes,
Figures 3 and 4 plot processor locality histograms for the three applications for block sizes of
16 and 6.4 bytes. The averages for the three block sizes are shown in Table 1.

Table 4: Spatial locality and the unpact of block size. Ouly user data blocks are considered. Numbers
denote the average of the nummber of clinging references to a block, at least one of which was a wnite,

Block Size

Trace | 4 bytes | 16 bytes | 64 bytes
ParaOPS5 5.6 TR 7.6
P-Thor 3.6 5.1 6.2
LocusRoute 88 29.2 117.2

Increasing the block size impacts the various applications differently. LocusRoute shiows a
substantial improvement in processor locality (3.8 to 117.2) as block size is increased from 1 to
G4 bytes. The reason for the substantial improvement for LocusRoute is that it has a central
data structure, called the cost array, accessed very frequently and in a regular fashion. thus
resulting in high spatial locality of references.® In comparison to LocusRoute, both P-Thor and
ParaOPS5 show improveinents of a much sinaller magnitude, and in fact, the processor locality
treasure decreases slightly for ParaOPS5 as we go from 16 to 61 byte blocks.

Why does block size iinpact processor locality so differently for various shared applications”
As the block size is increased the potential for references to adjacent words increases and two
opposing forces come into play. If the probability a given processor accesses a word in the
vicinity of a word it accessed before increases, then the processor locality is likely to improve.
Contrarily, a larger block size increases the nrobability of unrelated shared words residing in
the same block, and a write to one word can cause a ping to the entire block currently being
accessed by another processor. Clearly, the applications display differing degrees of both effects.

Let us lock at the issue of same processor versus different processor accesses of a block more
concretely. Examine the processor locality distributions for ParaQPS5 when block size is 16
bytes and when it is 61 bytes (see top of Figures 3 and 4). We see a significantly larger number
of occurrences with 8-16. 16-32. 32-6.1, and 61-128 clings before a ping as we move from 16 to 61
byte blocks. This increase is due to the spatial locality in the references of a single processor, the
positive force. However, we also see a significant increase in the number of occurrences where
there are only 1-2 clings before a ping as we move from 16 to 64 byte blocks. This is a result of
the interference effect discussed above, and overall it nullifies the advantage of the large bloek
size.

Note that the height of the distribution becomes sinaller as block sizes are inereased because even small value
at the tail end of the distribution correspond to a large number of references. For example, in LocusRoute, there
are 1R sequences of length between 256 and 512, which acconut for several thousand references.
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4.4 Cache Consistency Implications

Processor locality impacts the performance of cache coherence schemes. We examined the per-
formance of several cache coherence schemes through simulation with the ATUM traces for
various block sizes and used our notions of processor locality to gain insight into their behavior.
Our findings are summarized here. We also discuss some of the limitations of our definitions of
processor locality, and suggest modified definitions for use in specific applications.

Of the several caclie coherence schemes proposed in the literature (e.g., {16, 14, 12, 17, 13]), we
consider a representative each from the write-through with invalidate, write-back with invalidate,
and write-back with update classes of cache coherence schemes assuming a shared bus as the
comimnunications medium.” To help explain the various phenomena we observed, we use the data
presented in earlier sections. As ! efore we assume infinite caches, and unless otherwise stated,

block size is one word (or four bytes).

The write-through with invalidate scheme (WTI) is commonly used in low-end commercial
multiprocessors. In this scheme, every write from a processor accesses the bus both to update
main memory and to invalidate that location in other caches.

Examples of write-back with invalidate schemes include Goodman'’s write-once [16], Rudolph
and Segall’s scheme [17], Berkeley Ownership [14], and the directory scheme [20]. We consider
write-once (denoted WBI) as the second scheme in this paper. In this scheme, the first write to
a locatiou uses the bus to update main memory and to invalidate that location in other caches.
Subsequent writes tc that location by the same processor do not result in any bus traffic, as
that location is now owned locally.

Write-back with update schemes include Dragon [12] and Firefly [13]. We use Dragon as the
third scheme, and denote it WBU. In the Dragon scheme, all writes to a shared location (a
location present in multiple caches) result in a bus access to update the value of that location
in other caches. For non-shared locations, the cache acts like a regular uniprocessor write-back

cache.

We evaluated the performance of the above three cache coherence schemes in terms of the
bus transactions generated. .\ bus transaction is generated on block transfers due to misses,
invalidations, or updates. Because of our interest in characteristics of shared references. we
only include cpu-shared user data references for ParaOPS5, P-Thor, and LocusRoute. Because
caches are infinite, a data item brought into the cache remains there until invalidated

Before we discuss our results, we examine how we might choose an appropriate definition of
processor locality for a given application. Recall the three variations of processor locality in Sec-
tion 1.2. The first form simply counts the number of clinging references to a block (r} w? r/w,).
In other words, we use the average number of repeat references by a processor to a given block
of data. The second form counts the number of clinging references to a block for those runs that
included at least one write reference (r> w¥ r/w,). Figures 2 through 4 plotted distributions
using this second form. The third form counts just the number of writes in sequences of the
second form (w} r/w,). Eggers and Katz define and use the same notion in their evaluation of
cache coherence schemes in [5].

The first form is useful in analyzing cache coherence schemes that allow only one cached copy

*While a detailed analysis of the numerous cache consistency schemes proposed in the literature would be
interesting, it is beyond the scope of this paper. Instead, see the simulation study of several cache coherence
schemes by Archibald and Baer [18], and more recently, the simulation study using real address traces by Eggers
and Watz [19)
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of a block (e.g., the Diry.N B scheme [3]). The secend form is useful in examining ownership
bared protocols. wlere a writer st first become the sole owner of a block hefore proceading
with the write The third fomn is necessary to distiagnish between invalidating and updating
(or write-through) protcols.

We first compared the pe lormance of WTL WEIL and WBU for 4-byte blocks using form
three of proces:or local'ty. Ccmparing the number of transactions, we saw that the WTI scheme
was worse thaa both WBI and WBU. W1 looses to WBI because of the processor locality
displayed by write reference:. While every write generates bus traffic in WTI, clinging write
references do not cause bus traffic in WBI. In fact, recall from Section 4.2, that on average there
were 1.6. 1.7, and 1.2 writes in a sequence of clings before a ping for ParaOPS5, P-Thor. and
LocusRoute respectively. Based on these numbers we verified that the greatest savings between
WTI and WBI to be for P-Thor, next greatest for ParaOPS5, and least for LocusRoute. For
example, WBI in P-Thor saves 49% bus transactions over WTI, ParaOPS5 saves 31%. and
LocusRoute saves 11%.

Comparing WTI and WBU, both schemes generate an update transaction for every write
to a shared location. However, WBU saves about 25% updates because before the point that a
location becomes shared (a second processor requests it), only the first read or write produces a
bus transaction. WBU also has fewer block transfers because, unlike WTI, it never invalidates
a location from a cache.

Let us now compare WBI and WBU. WBI, iu general, will be superior to WBU if there
were a large number of clinging writes to an object before a ping. This is because, WBI daoes
not produce bus traffic after the first write in a sequence of clinging writes. Again, recall from
Section 4.2 that on average there are 1.6, 1.7, and 1.2 clinging writes for ParaOPS5, P-Thor.
and LocusRoute respectively. Thus WBI has the greatest chance to win over WBU for P-Thor.
next for ParaQOPS5, and least for LocusRoute, which is borne out by simulations. WBI wins
over WBU by 28% for P-Thor, by 3% for ParaOPS5, and loses by 21% for LocusRoute.

Dividing the total number of bus transactions generated by all three programs for the WBI
scheme (161.6K) by the total number of references that resulted in these transactions (1168.7K),
we see that there are approximately 0.138 bus transactions generated per reference. This number
appears quite large given infinite caches, ard there are two reasons for this. First, this data rep-
resents only cpu-shared user data references, v hich show poor processor locality as in Figure 2,
or equivalently, which display a high temporal locality of pinging references. Consequently they
do not benefit much from the read-sharing allowed by the WBI scheme. If one includes both user
and OS references, and both data and instructions, then the number of transactions per refer-
ence falls to 0.031, which is much better. This reduction is primarily due to the large number of
read-shared references generated by instruction fetches. When the block size is increased from
4 to 16 bytes, the number of transactions per reference further drops down to 0.016, primarily
due to the high spatial locality of instruction fetch references.

We then examined the bus transactions generated by WBI as the block size is increased to
study the spatial locality characteristics of cpu-shared user data references. For this analysis the
second form of processor locality is relevant because once a block is read, a trancaction takes
place only on a pinging reference - on a pinging read the block must be written back to memory,
while on a write the block must be invalidated.

We observed that the measure of processor locality using the second form correctly predicts
the trends in ParaOPS5 and LocusRoute. For example, the transaction rate in ParaOPS5
decreases when the block size is changed from 4 to 16 bytes, and the number of transactions




increases when the block size is further changed to 64 bytes. A corresponding increasing trend
is observed in the second form of the processor locality parameter (see Figures 2 through 4).

A different trend is observed in LocusRoute as the block size is increased. The transaction
rate decreases as we go from 4 to 16 to 64 bytes, a corresponding improving trend is displayed
by the processor iocality parameter for LocusRoute as the block size is increased.

The trends in P-Thor, however, did not match completely. A possible reason for the dis-
agreement we observed is that the second form of processor locality as defined by us corresponds
most closely to a protocol that invalidates a currently dirty copy of a block in a cache on a ping-
ing read rather than just performing the writeback and making it clean. If a more accurate
processor locality metric for analyzing performance of ownership protocols that clean rather
than invalidate is desired, one can measure the average length of sequences of references to a
block of data by a given processor, terminating the sequences only on pinging writes. This form
of processor locality is denoted 77 w} w,. The important observation is that the notion of pings
and clings make it possible to customize the processor locality definition to suit a particular
apnlication.

5 Summary and Conclusions

We have characterized locality in memory reference patterns of shared-memory multiprocessors.
Our data is based on traces obtained for three applications from a 4-processor VAX 8350 using
tiie ATUM address tracing technique. About one-fifth of the references in the traces are to
shared objects.

Shared references display a significant amount of temporal locality, but only a moderate
amount of processor locality for both read and write references. For example, the average
number of reads and writes to a write-shared block before a remote reference (a ping, which
may possibly invalidate the data) are 4 and 2 respectively. Nevertheless, caching shared data
is still highly useful because of the significant amount of read sharing. Although the average
number of writes to a block before a remote reference is just 2, we observed a high variance
in the length of write sequences. We believe that the use of hybrid updating and invalidating
schemes, such as updating for synchronization ob jects and invalidating for others, or a dynamic
competitive cache management strategy will prove useful in such environments.

The locality characterization of the shared-memory reference patterns also yields insight
on how various cache consistency schemes will perform. We analyzed three classes of cache
consistency schemes—write-through with invalidate (WTI), write-back with invalidate (WBI),
and write-back with update (WBU). For shared data references, WTI performs worse than both
WBI and WBU as it uses the bus on every write. Comparing WBI and WBU, the former seems
to have an edge for 4-byte blocks, while WBU does better for 16-byte and 64-byte blocks. The
processor locality parameter shows that blocks larger than 16 bytes in P-Thor and ParaOPS5
cause a degradation in processor locality, and thus the total bus traffic increases rapidly with
increasing block size. The WBU scheme is less influenced by the block size than WBI and WTI
because it always uses single word updates. Consequently, for large block sizes, WBU performs
better than WBI and WTI for all three programs.
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